Introduction to SAS macros
http://www?2.sas.com/proceedings/sugi29,/243-29.pdf



Learning objectives

In this shortened section, we will introduce ourselves to the SAS

macro functionality.
We will see three ways that macros can extend the capabilities of

SAS
1. Use of macro variables to modify SAS code
2. Use of macros to make modular SAS code

3. Use of macros to make SAS code that does different things
depending on data input



What are SAS macros?

» When you submit SAS code for processing, SAS compiles it
and executes it.

» If your code includes macro statements, these statements are
resolved first, creating vanilla SAS code. Then the SAS code
(with macros resolved) is compiled and executed as usual.

» SAS macros are indicated by %

» Can contain DATA and PROC steps
» Can also contain macro statements like %IF-%THEN-%ELSE

and %DO-%END
» Can also contain macro variables

» SAS macro variables are indicated by &

> Like an ordinary data variable except must be character type
and doesn't belong to a data set
» Can be used to store things like
> variable names

> numerals
> text strings to be plugged in to your SAS program



Macro variables

» Macro variables defined inside a macro have local scope
» Macro variables defined outside a macro have global scope

» The macro processor won't find macro variables inside single
quotes - use double quotes instead

» To assign a value to a macro variable, use %LET

> e.g. %4LET macroVariableName = value;

Example: Define the macro variable winner and assign it a value:
%LET winner = Lance Armstrong;

Now, if we want to use this macro variable, for example in a title
statement, we use the & so that the SAS macro processor will
identify the macro variable:

TITLE "First: &winner";

When the macro processor goes through the SAS program, it will
substitute the value of the macro variable, like so:

TITLE "First: Lance Armstrong";



Modular code with macros

» If you have a block of code that you use frequently, you can
define a macro and place the macro name in your SAS
program instead.

» Macro syntax is:
%MACRO macro-name;
macro-text
%MEND macro-name;

» Once you have defined your macro, you can insert it into your

SAS program with
Y%macro-name



Modular code with macros

» You can add parameters to macros, similar to function calls in
programming languages. The parameters become local macro
variables within the macro.

%MACRO macro-name (parameter-1=, parameter-2=,
parameter-n=) ;

macro-text

%MEND macro-name;

» You can then (optionally) supply values to the parameters
when you insert the macro.
Jmacro-name (parameter-l=value-1, parameter-2=);



Conditional logic

» You can use conditional logic for flow control of macros
%IF condition %THEN action;
%ELSE %IF condition %THEN action;
%ELSE action;

%IF condition %THEN %DO;
action;
%END;
» This makes macros much more flexible, and able to generate
different SAS code depending on input conditions



Data-driven programs

» CALL SYMPUT is a macro routine that allows a macro
program to peek at the data

> |t takes a value from a DATA step and assigns it to a macro

variable
» You can't use CALL SYMPUT to generate a macro variable

and use that variable in the same data step
> The data step must execute in order to get the value. CALL
SYMPUT then passes the created macro variable back to the
macro processor.

» Syntax:
CALL SYMPUT("macro-variable", value);

IF Place = 1 THEN CALL SYMPUT("WinningTime",
Time) ;
» When Place is equal to 1, the macro variable &WinningTime
will be assigned the value Time



Seeing what SAS sees

Debugging macros can be difficult.

» You can insert print statements to try to figure out where
bugs live

» You can use the MPRINT option
OPTIONS MPRINT;

» This will print out the resolved macro statements so that you
can see what the SAS program ends up looking like before
compiling and execution.

» The SAS program output will go to the log.

» Another suggestion is to create a vanilla version of the SAS
program and ensure that it works as intended before
modifying it into a macro.

» Make incremental changes and test at each change.



